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Abstract—This paper presents a novel system framework for interactive, three-dimensional, stylized, abstract painterly rendering. In

this framework, the input models are first represented using 3D point sets and then this point-based representation is used to build a

multiresolution bounding sphere hierarchy. From the leaf to root nodes, spheres of various sizes are rendered into multiple-size strokes

on the canvas. The proposed sphere hierarchy is developed using multiscale region segmentation. This segmentation task assembles

spheres with similar attribute regularities into a meaningful region hierarchy. These attributes include colors, positions, and curvatures.

This hierarchy is very useful in the following respects: 1) it ensures the screen-space stroke density, 2) controls different input model

abstractions, 3) maintains region structures such as the edges/boundaries at different scales, and 4) renders models interactively. By

choosing suitable abstractions, brush stroke, and lighting parameters, we can interactively generate various painterly styles. We also

propose a novel scheme that reduces the popping effect in animation sequences. Many different stylized images can be generated

using the proposed framework.

Index Terms—Painterly rendering, bounding sphere hierarchy, multiscale region segmentation, stylization and abstraction,

stroke-based rendering.
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1 INTRODUCTION

NON-PHOTOREALISTIC rendering (NPR) is a powerful
technique for generating images in the manner of

artistic styles such as painting [1], [2], [3], [4], [5], [6], [7],
pen and ink [8], [9], stippling [10], [11], and sketching [12],
[13], [14]. In recent years, a large number of approaches on
NPR have been proposed. Many of these earlier-stage
approaches concentrated on generating still images. Several
interesting systems and methods [1], [10], [11], [12], [13], [14],
[15], [16], [17], [18], [19] are later designed for rendering 3D
scenes in a variety of artistic styles. Cornish et al. [15]
addressed several common themes in generating NPR
stylized image/animation from 3D models, including: 1) pla-
cing stylized strokes with some randomness to imitate
drawing styles created by artists, 2) orientating the stroke
directions to express varied artistic effects, and 3) ensuring
the screen-space stroke density for frame-to-frame coherence.

The basic idea behind our framework is described in
Fig. 1. First, the input model is converted into a set of
3D points, shown in Fig. 1a. We propose a novel QSplat-like
[20] multiresolution hierarchy developed from bounding
spheres to organize these points. Each nonleaf sphere has
aggregate attributes associated with it such as its average
color and accumulated size. Unlike QSplat’s partitioning
method which used only the sphere’s spatial information,
our scheme takes other attributes such as color and

curvature into account. We perform a multiscale region-
based segmentation on the 3D points to build a hierarchy.
Our multiscale method is extended from a color image
segmentation method called JSEG [21]. Our system is
inspired by an image-based NPR work [22]. The aim of
the proposed hierarchy is to organize the points into a
meaningful structure of parts and boundaries. Fig. 1b
shows a multiscale segmented hierarchy from the lower
(right) to the higher (left) levels. From the right to left sides,
regions with similar regularities, such as color attributes,
are clustered into a larger region in the higher levels of the
proposed hierarchy. In this example, each region is
represented by a constant mean color. The boundaries are
well maintained at different scales. By choosing suitable
NPR abstractions, brush stroke for sphere nodes, and
lighting/viewing parameters, we can interactively generate
various painterly styles, as shown in Fig. 1c. The main
contributions of this paper are as follows:

. We present a novel 3D painterly rendering frame-
work. This framework can offer flexibility in NPR
stylization and abstraction, coherent NPR quality,
and interactive rendering performance on PC plat-
forms. The flexibility can be achieved by introducing
abstract operations, rules, and the dissimilarity
parameters on the traversal algorithm of the pro-
posed hierarchy. We also propose a novel smooth
level transition method that reduces the popping
effect in NPR animation.

. To the best of our knowledge, little work on 3D NPR
has involved the color patterns of regions on
3D model surfaces. A novel QSplat-like region-based
sphere hierarchy is proposed. With this hierarchy,
the region boundary/edge structure at different
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scales can be well maintained and produce many
specific NPR stylizations.

The rest of this paper is organized as follows: Section 2
reviews the related work. The preprocessing and hierarchy-
building methods are presented in Section 3. The rendering
algorithm and NPR abstraction are described in Section 4.
The proposed system is evaluated and the experimental
results are demonstrated in Section 5. The conclusion and
future work are given in Section 6.

2 RELATED WORK

In this section, the related works are surveyed. For other
interesting works, see two excellent survey books [24], [25]
or recent SIGGRAPH or NPAR conference proceedings.
Haeberli proposes a pioneering stroke-based rendering
scheme [26] to create painterly images using an ordered
collection of strokes described by shape, size, color, and
orientation. Hertzmann [4] presents a greedy algorithm that
creates multiple sized brush strokes. This method imitates
the procedure in which a painter draws a picture, forming
the paintings from multiple layers using rough to detailed
stroke sizes. The brush strokes in these two image-based
works were placed in the screen space, which is sufficient
for still images but may create a shower door effect or
popping effect in animation. To solve this problem, Meier
[1] associates the strokes with particles defined on the
surface of the objects. Because the strokes are associated
with the actual locations in space, they move smoothly
across the screen in a consistent manner as the viewing
parameters change. However, this technique cannot reg-
ulate the screen space stroke density. For example, as
objects move away from the viewpoints, the particle density
in the screen space increases. In this situation, too many
strokes will create an obviously much darker image and
may produce a completely different look for the image.

To address the frame-to-frame coherence issue, Cornish
et al. [15] proposes a view-dependent particle, multiresolu-
tion hierarchy to adaptively change the particle density
according to the distance between objects and the view-
point. Because the particles generated and vertices in the
original model are closely correlated, a less densely or
irregularly sampled polygonal model does not guarantee
having enough particle density for various viewing condi-
tions. In addition, when the hierarchy levels change, a

subset of particles are added or removed. This may still
cause noticeable popping. To reduce this popping effect, Xu
et al. [19] propose a continuous level of detailed structure,
in which only one particle is added or removed when
changing between two adjacent levels. Praun et al. [14]
introduce the tonal art map (TAM) technique to maintain
coherence across tones and scales for various lighting/
viewing conditions. This approach combines hardware
acceleration technology to achieve a real-time hatching
rendering. The QSplat [20] rendering is originally designed
for rendering point-based models that are organized as a
bounding sphere hierarchy. The QSplat includes a culling
and LOD metric to efficiently render point splats.

3 MULTISCALE SEGMENTED SPHERE HIERARCHY

Previous NPR approaches address the importance of region
structures [7], [23] such as edges and borders. In this
section, we will present our data structure and algorithms
to establish a multiscale segmented sphere hierarchy that
can organize the input models into a meaningful region
hierarchy according to model attribute similarities such as
color and curvature. For this purpose, we extend a well-
known image segmentation method called JSEG [21] to
manipulate the 3D models. The JSEG method is excellent at
segmenting images with fine-grained texture patterns.

3.1 Sampling Input Models

Our preprocessing algorithm begins with either a triangular
mesh or a cloud of points. Instead of explicitly sampling the
input mesh, QSplat takes the mesh vertices as the initial
input points and generates a hierarchical bounding sphere
structure from these points. When the mesh has triangles of
various sizes, the overestimated bounding sphere may
cause the traversal algorithm to descend the hierarchy
unnecessarily. To avoid this problem, we adopted the
resampling and relaxation approach of Turk et al. [27] to
explicitly sample the input mesh. This approach allows us
to explicitly determine the number of sampling points. We
do not want too many or too few points/spheres in the
hierarchy leaf nodes. To express various artistic effects, an
artist must have control over how the painterly strokes are
oriented. In this paper, the user-specified vector field,
normal and curvature information [1], [15] from a 3D model
can be used as orientation fields to guide stroke drawing.
Sometimes the principal curvature direction is too noisy or
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Fig. 1. (a) Input: 3D models are converted into a set of points, (b) multiscale region segmentation, and (c) painterly rendering with different stylization

and abstraction.



too detailed. We follow the method in [28] to select several
feature points with larger curvatures and use their principal
curvature directions to interpolate other nonfeature point
directions using the radial basis function (RBF). In this
manner, we can smooth the orientation of the vector fields
on the input models. The input data resource can also be
2D images. We treat a 2D image as an array of 3D points on
a plane, and then apply the proposed algorithm to it. In the
current implementation, each sphere node contains several
pieces of information, including the position, radius,
normal, normal cone, color, curvature, TAM, and principal
curvature direction. Fig. 2 shows an example sampling a
bunny model using the proposed method. The methods
used to build a tree to organize these newly sampled points
(i.e., or called spheres) are presented next.

3.2 Building the Hierarchy

The leaf sphere sizes in the QSplat tree must be large
enough to guarantee that no holes are left during rendering.
Once we have assigned the leaf sphere sizes, the QSplat
system exploits a BuildTree algorithm to develop the rest of
the hierarchy. As the tree is built, attributes such as the
normal and color at the interior nodes are set to the average
of the attributes in the subtrees. In the BuildTree algorithm,
different partitioning methods can generate different trees.
The QSplat adopts a K-D-like tree-partition method. There
are several other popular partitioning schemes available
such as the Octree and covariance splitting [29]. These
methods consider only the node spatial information. In our
application, the leaf nodes have various colors. As we
employ these partition methods directly to build QSplat
trees, the model region boundaries could be ill-maintained.
Later in this section, we will experimentally verify this
claim. To maintain the color region boundaries, we propose
a new QSplat-like bounding sphere tree that combines the
advantages of covariance splitting method and a mature
image segmentation method called JSEG. Compared to trees
built by the previous methods mentioned above, the
proposed tree produces a better hierarchy for abstract
painterly rendering.

The original JSEG is a fully automatic color-based image
segmentation method that identifies regions using color-
texture patterns rather than only the color information. In
practice, color image segmentation is not an easy task
because of the nature of textured pattern. In the JSEG
algorithm, image colors are first quantized into several

representative colors to reduce the amount of color
information. The quantized colors then become several
class indexes for building a class map. The class map
represents the property of the color-texture patterns. In our
3D extension, the local J is defined by following the JSEG
algorithm formulation [21]. For each 3D node p, the local
K-nearest neighboring node set K centered at p and the size
of K is N including p. Let Pk be the position for a K-nearest
neighboring node k and k 2 K, and m be the mean position
for the node set K,1

m ¼ 1

N

X
k2K

Pk; ST ¼
X
k2K

Pk �mk k2: ð1Þ

Suppose that all nodes are classified into C classes
according to perceptual color quantization [33]. For each
node p and its neighboring node set K, K is classified into
the same C classes, Ki, where i ¼ 1; � � � ; C. Let mi be the
mean of the Ni data points of class Ki,

mi ¼
1

Ni

X
k2Ki

Pk and SW ¼
XC
i¼1

X
k2Ki

Pk �mik k2: ð2Þ

The measured local J for p is then defined as

J ¼ SB=SW ¼ ðST � SW Þ=SW : ð3Þ

In this manner, we can compute a local J for each node and
obtain a 3D J-map for a given model. The higher the J value,
the more likely the node is near the region boundaries [21].
The JSEG method ensures that the J value stored on a
nonboundary node is close to 0. Once we obtain a J-map, we
start to grow regions in this J-map from some seed nodes with
lower J values. In our experiments, we always choose seed
nodes whose J values are below the mean J multiplied by a
small constant. Similarly, we terminate the growing region at
an adjacent node when its J value reaches a user-selected
bound. After this region has been grown, the oversegmented
regions whose size or color similarity is below a threshold to
the neighboring clusters are then merged, thus accomplish-
ing segmentation. Fig. 3 shows an example of 3D segmenta-
tion. In a comparison study, we applied the JSEG software
[30] to the rendered image in Fig. 3a and found that our
3D segmented result was very similar to the image’s
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Fig. 2. (a) Input mesh model, (b) sphere distributions before and after resampling and relaxation, (c) curvature distribution coded in color from blue to

red, (d) vector field using principal curvature direction, and (e) vector field after RBF smoothing. Note that in (b): Left, QSplat creates leaf spheres of

various sizes, but in (b): right, the leaf sphere sizes are uniform after resampling and relaxation.

1. Since K is not a large node set in our implementation, we use the mean
position and Euclidean distance instead of surface center and geodesic
distance in (1) and (2).



2D counterpart. Note that in 2D, we can see some over-
segmented regions due to the 2D background color. In
addition, in Fig. 3c, we can see the J value in the nonboundary
region is close to 0, encoded as the color blue.

Once we obtain the segmented regions, the next step is
using them to build a hierarchy. We can treat all regions as
vertices of a graph. A region adjacency graph (RAG) is built
to organize the regions. Fig. 3f shows an example of a region
adjacency graph for a segmented input model. In our
hierarchy, two neighboring regions are merged to form a
new region according to the distance between their mean
colors and their region sizes. For each connected region pair
ri and rj, let the merge evaluation function be defined as:

eij ¼
color disðri; rjÞ; if Sizeri < �� Sizemean

and Sizerj < �� Sizemean;
color disðri; rjÞ � "; else:

8<
:

ð4Þ

In the above function, " is a positive number near zero.
The color_dis function will return the distance in the HSI
color space between two mean colors in regions ri and rj,
� ¼ 0:3 and " ¼ 0:05 in this paper. We evaluate the merge
evaluation function and find a connected region pair that
has the smallest merge evaluation value. This connected
region pair is then merged into a bounding sphere node.
Recursively, we proceed with this merge process and build
a hierarchy from the regions to the root. In this manner, we
make sure that each node’s property is more homogenous
than that of its parent node; any merge region pair is more
homogenous in the color space than other regions. The
above merging process is treated as a hierarchical region-
based merging. Each region may cover a large area or
contain several subregions of various curvature distribu-
tions; therefore, we will perform further partitioning within
each region using a covariance splitting method [29]. This
splitting method splits the inputs along the direction of
greatest variations and sets user-specified thresholds for the
curvature variations to hierarchically cluster the input data.
The advantage of this method over other methods, like the
K-D tree, is that it takes the model surface variations (i.e.,
curvature) into account. The pseudocode for building the
proposed hierarchy is shown in Fig. 4.

Fig. 5 shows a comparison study of hierarchies built
using different splitting methods. In this study, different
levels for each hierarchy are shown and each node is drawn
using its descendant leaf nodes to compare how well each

tree can maintain the region boundaries at different levels.
In Figs. 5a and 5b, both the K-D tree and covariance
splitting methods produce a uniform blur effect with
different Gaussian kernel sizes from the leaf nodes to the
root. In this example, we can see that Fig. 5b is slightly
better than Fig. 5a by taking curvature information into
account. For example, look at the hands of the bunny;
Fig. 5b’s result is better than Fig. 5a’s. In contrast, the
proposed method maintains the region boundaries (see
Fig. 5c) across different levels of the tree and obviously
performs much better than both Fig. 5a and Fig. 5b.

In rendering NPR style images, the difference between
each node and its child nodes is recorded in our hierarchy.
The dissimilarity of a sphere node is defined as:

Node:S ¼
Xn
i¼1

½ node:value� node:child½i�:valuej j

þ ðnode:child½i�:SÞ�:
ð5Þ

This dissimilarity is an accumulated value from a nonleaf
sphere node to its descendent leaf nodes. Several node
values and dissimilarities are recorded in each node
including the variance in color, curvature, bounding sphere
coverage, the normal cone width, and J. In Section 4, we will
show how the dissimilarity information is used to select
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Fig. 3. (a) the original 3D color points, (b) results of color quantization, (c) a 3D J-image encoded by color from blue to red, (d) results after

3D segmentation, (e) using JSEG software [30], the segmented result on a 2D image for comparison study, and (f) a corresponding region adjacency

graph for (d).

Fig. 4. The pseudocode for hierarchy building.



appropriate nodes from the hierarchy to render NPR style

images.

4 RENDERING ALGORITHM

The proposed rendering is a two-pass method, including

1) the first pass renders objects into depth buffer for obtaining

visibility information and 2) the second pass executes the

actual rendering using visibility information. For the second

pass, subject to several user-specified abstraction rules and

rendering options, the proposed rendering algorithm selects

suitable nodes from the proposed tree and stroke textures for

display. The pseudocode in Fig. 6 is used for the second pass.

This pseudocode consists of two procedures: 1) selecting

candidate regions and 2) drawing suitable stroke nodes for

display under the selected regions. These two procedures are

subject to user-specified testing rules. Once we select some

region nodes, we can draw its descendant nodes as stroke
nodes using the region node’s color, region borders, and its
orientation vector field. Before we describe the details, a clear
distinction has to be made between the region and stroke
nodes, as illustrated in Fig. 7. In the following sections, we will
describe how to control the region and stroke nodes selection
in more detail.

4.1 Selecting Candidate Region Nodes

Many 2D NPR methods such as [4], [22] propose some
abstraction mechanisms for expressing original objects with
minimal elements under a given threshold. Hertzmann [4]
attempts to paint images using the minimal number of
strokes under a color difference threshold. DeCarlo et al.
[22] use the minimal regions with eye tracking information
and color segmentation to paint images. In Section 3.2, we
introduce a dissimilarity value S on each node in (5). This
information indicates the accumulated difference in attri-
butes from a node to its descendants. In TraverseHierarch-

yRegion( ), we can simply set our testing rule as S is less than
a user-specified dissimilarity threshold. Under this selected
attribute (i.e., color) dissimilarity threshold, the proposed
method attempts to use minimal regions to express input
models. With a larger S, the upper-level nodes (i.e., large
regions) will be selected and the rough details will be used
to paint images. This simple metric can be seen as a region-

based color abstraction of models. For example, the
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Fig. 5. A comparison study of hierarchies to show region boundaries of different levels. (a) K-D tree, (b) covariance splitting tree, and (c) the

proposed tree.

Fig. 6. The rendering pseudocode in the second pass.

Fig. 7. (a) Another bunny model with more varied, fine-grained textures.
(b) Each row of images from the left to the right represents different
region nodes from the finer to coarse details. Each column of images
from the top to the bottom represents different sizes of brush strokes
drawn from small to large scale.



selected S value is increasing for images from the left to the
right in Fig. 7. Thus, the region details decrease from the left
to the right, respectively. Once region nodes are deter-
mined, we draw their descendants as strokes in Traverse-
HierarchyStroke( ). Fig. 8 shows the advantage of the
proposed tree. In this example, the K-D tree requires
deeper tree traversal than the proposed method to
accurately fit the boundaries. In other words, in terms of
the number of minimal regions or computation efficiency,
the proposed tree performs better than the K-D tree.

4.2 Selecting Candidate Stroke Nodes

Once we find the candidate region nodes in TraverseHier-
archyRegion( ), we need to select their suitable descendant
nodes, called stroke nodes, for display in TraverseHierarch-
yStroke( ). The stroke nodes are used to paint each region.
The top of each column in Fig. 7 uses smaller strokes to
paint each region than those used by the bottom column. In
Sections 4.2.1 and 4.2.2, we propose two methods for
choosing stroke nodes: 1) view-independent and 2) view-
dependent stroke abstractions, respectively. These two
methods represent two different views of NPR painterly
rendering: One uses a fixed number of strokes to paint each
region and the other uses strokes with a fixed size to paint
on the canvas.

We use QSplat [20]’s approach to render a stroke node as
a single texture-mapped quad sprite. In our implementa-
tion, the image texture is selected from one image from a set
of TAMs [14] that consist of two-dimensional texture
images. The user must provide a set of TAMs for the
proposed system. In this set of TAMs, each texture image in
the bottom row represents different tones for various
lighting conditions. Each column image represents different
scales for a tone image at the bottom. Each column image
can be termed as a sequence of mipmaps of the same tone.
Pruan et al. [14] do not apply TAMs to LOD geometry. The
TAMs are only applied to the same geometry. Once the
viewing conditions change (zoom-in or zoom-out), this
technique automatically selects one image from a column of
images using the MIPMAP scheme.

4.2.1 View Independent Stroke Abstractions

For view-independent method, we simply choose stroke
nodes (i.e., bounding spheres) using the rule:

RadiusRadiusðnodeÞ � StrokeRadiusThresholdStrokeRadiusThreshold: ð6Þ

In rendering, once a stroke node is selected, it will not be
changed (i.e., the geometry is fixed at some sphere hierarchy

levels) for various viewing conditions. Therefore, we term
this the “view-independent” approach. To ensure coherent
tones and screen density in the strokes for various lighting/
viewing conditions, we assign a set of two-dimensional
TAMs to each stroke node in our implementation. Depending
on the current lighting/viewing conditions, we choose an
image from the assigned two-dimensional TAMs to draw a
stroke node. This method does not have a popping problem
because the strokes are adhered to the models. The
disadvantage of this approach is that it cannot dynamically
switch sphere hierarchy levels to gain computation efficiency
for various viewing conditions. We propose another method
called the “view-dependent” approach in Section 4.2.2 to fix
this drawback. The “view-independent” approach is more
flexible than the approach by Pruan et al. [14], although the
geometry is fixed for both methods. Our “view-independent”
approach allows users to flexibly select some fixed sphere
hierarchy levels before rendering instead of always selecting
the same nodes.

4.2.2 View Dependent Stroke Abstractions

The second approach involves simply choosing the stroke
nodes using the rule:

SplatScreenSizeSplatScreenSizeðnodeÞ � StrokeSizeThresholdStrokeSizeThreshold; ð7Þ

where SplatScreenSizeSplatScreenSizeðnodeÞ is the projected size of the
splat (i.e., sphere) on the screen. In this manner, the size of
the strokes painted in each region is fixed and stroke
selection is view-dependent. As the view changes, the
hierarchy is traversed to select a set of stroke nodes to
ensure the stroke density. In the view-dependent approach,
we assign only the bottom row of TAMs instead of two-
dimensional TAMs to each stroke node for various lighting
conditions. Note that TAMs were not applied to the
geometry LOD in [14]. We cannot simply assign each
TAM column to the corresponding sphere hierarchy level.
As in Cornish et al.’s work [15], for various viewing
conditions, a subset of nodes are added (zoom-in) or
removed (zoom-out) to maintain the stroke density in the
proposed sphere hierarchy. Both [15] and our method will
cause popping. We propose a smooth level transition
method in Section 4.2.3 to solve the popping problem. This
smooth transition efficiently renders the hierarchy, main-
tains the stroke density, and avoids popping in various
lighting/viewing conditions. The view-dependent ap-
proach requires only a row of TAMs rather than the entire
set of TAMs required by the view-independent method.
Therefore, the view-dependent method is more attractive.

4.2.3 Smooth-Level Transitions

The QSplat [20] does not incorporate an algorithm for smooth
transitions as sections of the model changes from one level of
detail to another. Figs. 9a and 9b show the tree-level
transitions. In Fig. 9a, once the level changes, child nodes
varying from 2 to 4 are added or removed. As seen in the
supplementary video clip, this may cause noticeable popping
like [15]. This is because the QSplat tree adopts a discrete set of
levels rather than a continuous LOD structure. As suggested
by [20], geomorphs in Hoppe’s progressive mesh system [31]
can be used to potentially solve or reduce this problem. For
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Fig. 8. The region boundary problem in hierarchy. (a) Input model, (b) K-
D tree, and (c) the proposed tree. In (b) and (c), the left side shows the
selected region nodes and the right side shows the stroke nodes. The
(b) method requires deeper traversal of tree due to poor node clustering
in color space.



example, to generate continuous LOD, the continuous nodes
are generated by interpolation, including color, position, and
size, between the parent and child nodes. This naive
geomorph implementation slightly improves this problem.
Furthermore, from our practice, this approach still has
obvious artifacts because of the overlapped strokes from
these interpolated nodes. In Section 3.1, our models are
uniformly sampled and most sibling nodes are well spaced
(i.e., no overestimated bounding spheres) in the tree. When
these interpolated nodes are progressively transiting toward
their parent node, overlapping among these interpolated
nodes increases. Therefore, in particular for semitransparent
stroke patterns, the tone from these nodes becomes much
darker. Popping is still noticeable in the animation sequence.
We adopt a novel variant of the above geomorph implemen-
tation to compromise between the popping and tone
problems. First, the intermediate nodes are interpolated
using child and parent nodes. Next, we select a child node,
denoted G, whose position is nearest to the parent and its
radius size is the largest among the child nodes. Excluding
this G node, we linearly interpolate an alpha blending value
using ChildSplatStrokeSize and ParentSplatStrokeSize for each
intermediate stroke node whose splat size is StrokeSizeThres-
hold that is between ChildSplatStrokeSize and ParentSplatStro-
keSize. Therefore, except for theGnode, the other interpolated
nodes with an alpha value become more transparent as they
approach their parent node. This allows avoiding sudden
changes between two LOD levels. The idea is illustrated in
Fig. 9c. In contrast to other methods, this new approach
performs surprisingly well and can successfully eliminate
most popping occurring in other methods. See the supple-
mentary video clip for a comparison among different
methods.

4.3 Silhouettes, Region Borders, and
Directional Strokes

The silhouette is an important feature in NPR. In Traverse-
HierarchyStroke( ), if a node meets silhouette condition:
normalnormalðnodeÞ � view vectorview vector ¼ 0 ¼ coscosð90�), it is drawn as a
silhouette rather than a stroke on the canvas. Because the
model is a discrete set of nodes rather than a continuous
node, the silhouette condition is slightly modified as:
normalnormalðnodeÞ � view vectorview vector < coscosð90� � ThreasholdDegreeThreasholdDegreeÞ,
where the ThreasholdDegree is used to control the silhouette
width (see an example in Figs. 13c and 13d). The region
borders are also important features that express objects. In
Section 3.2, we have a region adjacency graph (RAG) to
organize segmented regions from the JSEG algorithm. In
TraverseHierarchyStroke( ), we use leaf nodes to draw region

borders instead of region candidate nodes. Subject to a
user-specified threshold, our system can draw different
levels of region borders from RAG to express objects. Fig. 10
shows an example illustration of various levels of region
borders. The strokes can be oriented along some vector
fields. Figs. 10c and 10d show an example of stroke
orientations controlled using the stroke’s node vector fields
and region node vector fields. The choice can be subject to
the user’s specification. In practice, to enhance the region
effect, we suggest using the region node orientation. In
actual paintings, brush strokes have the same direction in
one segmented area, but the stroke direction may change in
the image border edge areas. Similarly, we can use either
the stroke node color or region color (i.e., mean color in the
region) to draw stroke nodes. In addition, Perlin’s Noise
[32] value can be added to slightly modify either the stroke
direction or color to create stylized strokes with some
randomness to imitate the drawing styles created by artists
These NPR options can be specified in TraverseHierarchy-
Stroke( ).

5 NONPHOTOREALISTIC RENDERING STYLES

5.1 Results

This section shows images rendered by several very different

NPR styles. We also describe how each effect is produced. A

video of all examples in this paper can be found at http://

couger.csie.ncku.edu.tw/~vr/NPR/Demo.htm. For a given

bunny model, Figs. 11a, 11b, and 11c show different image

styles including watercolor, hatching, and half toning. These

three image styles are rendered in a single layer using the

proposed method with different TAM stroke textures. The

input data are originally a cloud of points rather than a
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Fig. 9. (a) The discrete-level transitions like [15], (b) the corresponding

hierarchy, and (c) the proposed continuous-level transition.

Fig. 10. (a) Original input with color. In (b) and (d), we show region
borders with coarse to fine details. This example is inspired by [22].
(c) Stroke orientation controlled by stroke node vector fields. (d) The
orientation is controlled by region node vector field. To emphasize the
regularity in each region, case (d) seems to be better than (c) as
suggested by many previous works [7], [23].

Fig. 11. Illustrations of the same model with different NPR styles:

(a) watercolor, (b) hatching, and (c) half toning.



polygon model. In this example, we use [29] to simplify this

point model first before building the tree. To calculate the

curvature of the point surface models, we measure the

estimated surface variation [29] using PCA on the neighbor-

hood covariance matrix. Fig. 12 shows another NPR result for

rendering a well-known point-based model, the David statue.

We render a simplified resolution of the original David model

here due to the current system memory limit.

The proposed system can imitate paintings with multiple

brush strokes of multiple sizes in [4]. At runtime, we can

make a simple classification to identify if a leaf node

represents a finer or coarser detail. In Figs. 13a and 13b,

curvature and color gradient information are used to

classify the leaf nodes into two classes: coarse (Fig. 13a)

and finer (Fig. 13b) details. A large brushstroke size is then

chosen to draw (Fig. 13a) to obtain an image. A small

brushstroke size is then used to draw (Fig. 13b) to obtain

another image. These two images are then blended to create

the final image (Fig. 13e). For this example, the proposed

rendering method is run twice to obtain these two layers.

Note that we also show the TAMs used in Fig. 13a and

Fig. 13b for various lighting conditions. Fig. 14 shows

another example using the same process.

Fig. 15 shows another two-layer painting example

inspired by [4] and [22]. The image is painted using

constant color regions. Fig. 15a shows the source image.

Fig. 15b is an image painted from the first layer using region

borders. Fig. 15b is produced using only borders where the

adjacent color gradients are larger than a user-specified

threshold. The image in Fig. 15c is blended with the second

layer painted with different oriented strokes and borders

using color gradients. Fig. 15d shows another two-layer

painted image with more abstraction (i.e., the finer details

are removed). This example demonstrates the flexibility of

the proposed method. The user can freely adjust different

options and parameters to vary the style of painting in a

very intuitive manner.

Fig. 16 shows an example of 3D Chinese landscape

painting created by the proposed method. In Chinese

landscape painting, TSUN stroke techniques are used to

express the rock textures [6].

It will be interesting to give the system a hint to create an

abstracted image that has details in only some the places as

shown in Fig. 17c. For example, the user can paint a gray-

level image called a local importance map, as shown in

Fig. 17b, to guide the local abstraction. The proposed

traversal method is then changed to traverse down to find

the stroke nodes first and then traverse up to find a suitable

region node that fits the local abstract value specified by the
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Fig. 12. NPR rendered results of David statue using the proposed
system.

Fig. 13. Painterly image with multiple brush strokes of multiple sizes. Width varying silhouettes: (c) 10 degree and (d) 20 degree for

ThresholdDegree.



local importance map. Fig. 18 shows another example of a

point-based model called the octopus.
In Table 1, we demonstrate the rendering efficiency of our

proposed rendering system for the illustrations in this

section. We also show stroke size (N �N) in pixel units for

each example. We implemented our system using OpenGL

on the GeForceFX 5900Ultra graphics card. Our test platform

is a Pentium 4 2.4G with 512 MB of main memory, running the

MS windows 2000 system. All images were rendered at 640�
480 resolution. The obtained frame rate was the average

interaction performance with the models. There was not

much performance difference between rendering different

image styles in a single layer of the proposed method. If

multilayer rendering was required to generate a series of

layers, the rendering performance was slightly degraded due

to overhead in each layer. In addition, some options such as

region borders and silhouette drawings increased the

rendering time. At present, the major bottleneck in the

rendering performance is the speed required to access the

depth buffer for splat visibility testing. This access time

ranges from 0.007 to 0.009 seconds. In addition, in all

examples in this section, the time for required to obtain the

visibility information ranged from 0.005 (Fig. 10d) to 0.021

(Fig. 18) seconds. This cost depends on the number of nodes

rendered into the Z-buffer. For example, in Fig. 18, 19,353

nodes were rendered into the Z-buffer.

5.2 User Controls and System Limitations

The main parameters provided to users for generating NPR

results and the limitations of the proposed system are

addressed next. In preprocessing, the proposed system

provides users with three main parameters to control the

JSEG segmentation: 1) the threshold for color quantization,

2) the neighborhood size for local J value, and 3) the color

similarity threshold for region merge to reduce over-

segmented regions. In the tree traversal, the system requires

that the users provide DissimilartyThreshold (i.e., selecting

region nodes) and StrokeRadiusThreshold or StrokeSizeThres-

hold (i.e., selecting brush stroke nodes) parameters to

control the NPR abstraction degree. Users also need to

provide a set of prerendered TAMs to draw stroke nodes

and other optional NPR parameters to control the silhouette

condition, region borders, stroke directions, and so on.

No single segmentation method can perform well in all

cases. We used the JSEG method for segmentation in the

proposed system. The JSEG method has the advantage of

correctly segmenting images with fine-grained texture

patterns in which the texture colors do not vary signifi-

cantly. From our experience, if colors or texture patterns

vary significantly in a region, this region will be potentially

oversegmented. In Fig. 19, both the input source images,

Fig. 19a and Fig. 19b, consist of three distinct regions from

visual observation. Using JSEG, we can successfully

segment Fig. 19a into three regions, but the method fails

for Fig. 19b because the colors or textured patterns vary too

much. In the future, we will investigate other segmentation

schemes to enhance the proposed system.

6 CONCLUSIONS AND FUTURE WORK

A novel system framework for three-dimensional NPR

stylized and abstract painterly rendering is proposed. The

proposed framework successfully generates many interest-

ing stylized images and additional artistic styles can be

developed in the future. In contrast to other previous 3D NPR

works, the proposed tree is built using color and geometric

information. Therefore, the region borders can be well

abstracted from coarse to fine scales.

Several future works can be performed and described as

follows. For example, we will investigate better segmenta-

tion methods to enhance our system. We may consider

geometric feature boundaries like [34] when building the

hierarchy. The proposed system requires user-specified

parameters to adjust the rendering styles. Each style can be
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Fig. 15. Another example of a two-layer painting subject to different NPR
options and user-specified parameters including region borders, stroke
sizes, and patterns. (Photo courtesy http://philip.greenspun.com).

Fig. 14. Another example with multiple brush strokes of multiple sizes. (a) Original chameleon model, (b) the coarse details with large brush strokes,

(c) the finer details with small brush strokes, and (d) the blended results using (b) and (c).



set using an intuitive set of parameters determined by

users. In the future, we hope to include some automatic

learning and style transfer techniques such as “Image

analogies” [5] to reduce the manual effort or to guide users

in setting parameters. To express models with deformation

such as [35], [36] in stylized and abstract manners is another

challenging topic. Some extra work in the proposed system

will be done in the near future such as painting long strokes

along the principle curvature direction over surfaces.

Borders rendered with better line-drawing styles will also

be included.
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Fig. 16. Simulated TSUN techniques in Chinese landscape painting. (a) Original models, (b) the first layer, (c) a set of TAM strokes, and (d) the final

results (the first + second layers + silhouette).

Fig. 17. (a) Original model. In (c), the details are controlled by a gray-level image (b).

Fig. 18. Octopus point model rendered in a NPR style.

Fig. 19. Segmented results using JSEG. In contrast to (a), (b) seems to

be oversegmented.
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